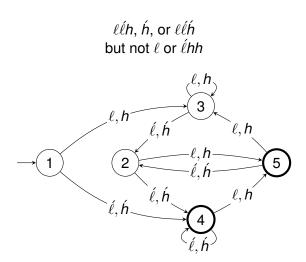
Algebraic analyses of phonology For the workshop on algebraic models of generative linguistics

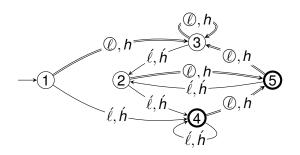
Dakotah Lambert

09 Mar 2024

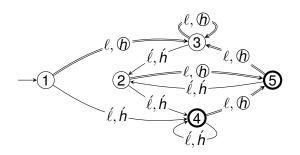
- Phonotactics ⊆ regular
 - Necessary?

- Phonotactics ⊆ regular
 - Necessary? (seems not)
 - FO[<]?

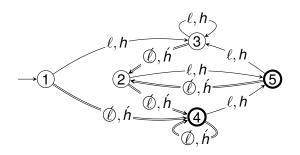

- Phonotactics ⊆ regular
 - Necessary? (seems not)
 - FO[<]? (better)
 - Lower?
- Only forbidding substrings/subsequences/etc?

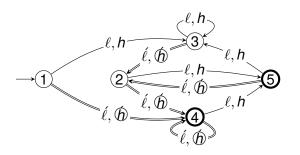

- Phonotactics ⊆ regular
 - Necessary? (seems not)
 - FO[<]? (better)
 - Lower?
- Only forbidding substrings/subsequences/etc?
- No: Uyghur backness harmony, Karanga Shona tone, . . .
- Propositional logic? Maybe!

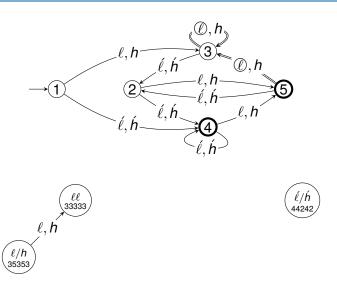
Outline

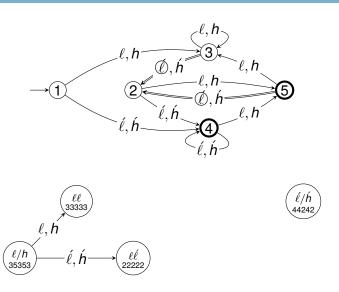

- Bounded stress: simple! Only reverse/definite?
- Varieties
- Long-distance constraints: Culminativity
- Unbounded stress
- Harmony
 - Symmetric
 - Asymmetric
 - Uyghur

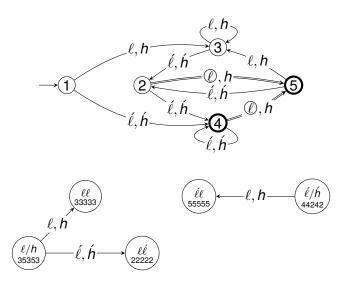
Stress-penult

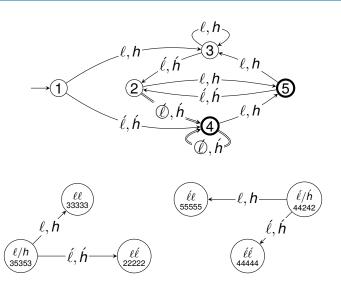


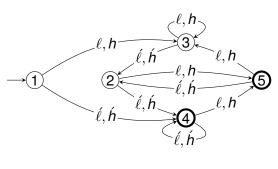


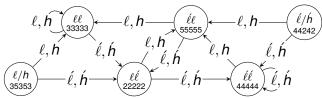


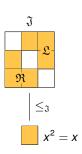


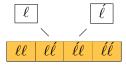




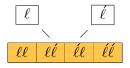







Syntactic semigroup: Multiplication table

Syntactic semigroup: Green's relations & eggboxes


- $a \le_{\mathfrak{L}} b$: a = b or a = sb for some s a is in the b-column
- $a \le_{\Re} b$: a = b or a = bs for some s a is in the b-row
- \blacksquare $a \leq_{\mathfrak{I}} b$: $a \leq_{\mathfrak{L}} c$ and $c \leq_{\mathfrak{R}} b$ for some c
- $a \mathfrak{L} b$: $a \leq_{\mathfrak{L}} b$ and $b \leq_{\mathfrak{L}} a$
- Similar for $a \Re b$ and $a \Im b$

Syntactic semigroup: Stress-penult

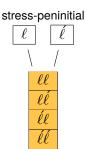
Definite

Definite: Only care about the last few symbols

- $\blacksquare a \mathfrak{L} b \iff a = b \quad (\mathfrak{L}\text{-trivial})$
- All (and only) idempotents at bottom

Equivalently: $\llbracket sx^\omega = x^\omega
rbracket$ (Brzozowski, 1976; Almeida, 1995)

Reversal


$$ab\mapsto ba$$
 $\mathfrak L$ swaps with $\mathfrak R$

Reverse definite:

Only care about the first few symbols

- $\blacksquare a \Re b \iff a = b \pmod{\Re\text{-trivial}}$
- All (and only) idempotents at bottom

Equivalently: $[\![x^\omega s = x^\omega]\!]$ (Brzozowski, 1976; Almeida, 1995)

Bounded stress

Stress anchored to within some fixed distance of a word-edge: reverse/definite (kind of)

Varieties

Varieties closed under:

- Boolean combinations
- Quotients
- Inverse-homomorphisms

+-varieties :: inverse **nonerasing** homomorphisms

Reverse/definite are only +-varieties

(Eilenberg, 1976)

Culminativity

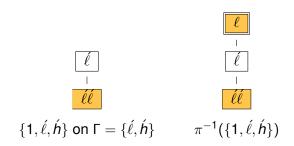
Stress does not appear twice.

Long distance: $\ell h \dots h \ell$ violates

Local after projection:

Projection wants to be either empty or single-letter

Tiers


Alphabets: Σ total, Γ salient

Projection:
$$\pi(\sigma) = \sigma$$
 if $\sigma \in \Gamma$ else 1 $\pi(xy) = \pi(x)\pi(y)$

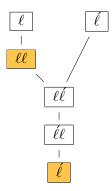
 π is a homomorphism

Culminativity: $\pi^{-1}(\{1,\acute{\ell},\acute{h}\})$ for $\Gamma=\{\acute{\ell},\acute{h}\}$

Culminativity

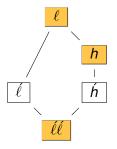
Both definite and reverse definite on projection. Unprojection is neither! Idempotent $\ell \equiv 1$ not at bottom.

Tier-based reverse/definite (Heinz et al., 2011; Lambert, 2023)


Piecewise-testablitiy

- Piecewise testable = propositional with subsequences
- 3-trivial (Simon, 1975)

Culminativity: tier-based reverse/definite **and** piecewise testable


The real stress-penult and stress-peninitial

- 𝔻-trivial: piecewise testable
- Not reverse/definite
- Not tier-based reverse/definite
 - Needs two tiers:
 - Culminativity on stress-tier
 - Stress-anchoring on full word
- Multitier reverse/definite
- Bounded stress is long-distance!

Unbounded stress

{Rightmost,Leftmost} heavy else {rightmost,leftmost} (with culminativity)

All piecewise testable (\mathfrak{J} -trivial)

Unbounded stress: Default-to-same

Rightmost heavy else rightmost: multitier definite

$$[\rtimes \acute{\sigma} \ltimes]_{\{\acute{\sigma}\}} \wedge ([\acute{h} \ltimes]_{\{h,\acute{h}\}} \vee ([\rtimes \ltimes]_{\{h,\acute{h}\}} \wedge \acute{\ell} \ltimes))$$

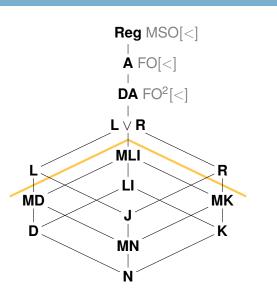
Leftmost heavy else leftmost: multitier reverse definite

$$[\rtimes \acute{\sigma} \ltimes]_{\{\acute{\sigma}\}} \wedge ([\rtimes \acute{h}]_{\{h,\acute{h}\}} \vee ([\rtimes \ltimes]_{\{h,\acute{h}\}} \wedge \rtimes \acute{\ell}))$$

Three tiers: stress, heavy, and word

Unbounded stress: Default-to-opposite

Rightmost heavy else lefttmost: multitier gen. definite

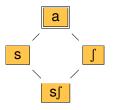

$$[\rtimes \acute{\sigma} \ltimes]_{\{\acute{\sigma}\}} \wedge ([\acute{h} \ltimes]_{\{h,\acute{h}\}} \vee ([\rtimes \ltimes]_{\{h,\acute{h}\}} \wedge \rtimes \acute{\ell}))$$

Leftmost heavy else rightmost: multitier gen. definite

$$[\rtimes \acute{\sigma} \ltimes]_{\{\acute{\sigma}\}} \land ([\rtimes \acute{h}]_{\{h,\acute{h}\}} \lor ([\rtimes \ltimes]_{\{h,\acute{h}\}} \land \acute{\ell} \ltimes))$$

Three tiers: stress, heavy, and word

A few varieties



- D definite
- K rev. def.
- LI gen. def.
- N co/finite
- MV multitier V
 - J ℑ-trivial

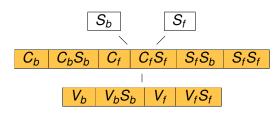
 - R R-trivial

Harmony: Symmetric

Words cannot have both ∫ and s



3-trivial and multitier co/finite


$$[\rtimes \ltimes]_{\{s\}} \vee [\rtimes \ltimes]_{\{J\}}$$

Harmony: Asymmetric

Words can have ∫...s but cannot have s...∫

Uyghur backness harmony

NOT \mathfrak{J} -trivial but is multitier definite:

$$([V_f \ltimes]_{V_f \cup V_b} \wedge S_f \ltimes)$$

$$\vee ([V_b \ltimes]_{V_f \cup V_b} \wedge S_b \ltimes)$$

$$\vee ([\rtimes \ltimes]_{V_f \cup V_b} \wedge [C_f]_{C_f \cup C_b} \wedge C_f S_f \ltimes)$$

$$\vee ([\rtimes \ltimes]_{V_f \cup V_b} \wedge [C_b]_{C_f \cup C_b} \wedge C_b S_b \ltimes)$$

Software

The Language Toolkit does the classification

https://hackage.haskell.org/package/language-toolkit

How? Create semigroup, check membership via equations

Example — "is expr multitier definite":

:isMTDef expr

:isVarietyS [xyx*=yx*] expr

Conclusions

- Phonotactics: propositional
 - Substrings (adjacency)
 - Subsequences (precedence)
 - Multitier (adjacency on one or more projections)
- Transducers → semigroups too
- Same classes exist for functions
- Language Toolkit can classify functions too
- Future work
 - Collect and classify functions
 - Multirelation propositional stuff

References

Jorge Almeida. 1995. Finite Semigroups and Universal Algebra, volume 3 of Series in Algebra. World Scientific, Singapore.

Janusz Antoni Brzozowski. 1976. A generalization of finiteness. Semigroup Forum, 13:239–251.

Samuel Eilenberg, 1976. Automata, Languages, and Machines, volume B. Academic Press, New York, New York.

Jeffrey Heinz, Chetan Rawal, and Herbert G. Tanner. 2011. Tier-based strictly local constraints for phonology. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Short Papers, volume 2, pages 58–64, Portland, Oregon. Association for Computational Linguistics.

Dakotah Lambert. 2023. Relativized adjacency. Journal of Logic, Language and Information, 32(4):707-731.

Imre Simon. 1975. Piecewise testable events. In Helmut Brakhage, editor, Automata Theory and Formal Languages, volume 33 of Lecture Notes in Computer Science, pages 214–222. Springer-Verlag, Berlin.