
Constraint-driven analysis
of formal languages

Dakotah Lambert

16 Feb 2024



©Dakotah Lambert 1/35

Key points

Classification
What relations are available?
How are they used?

M operator :: multiple tiers
Learning

What information is available?
How do we extrapolate from it?



©Dakotah Lambert 2/35

Deriving a class hierarchy
as the linguists would



©Dakotah Lambert 3/35

Alternation

ab
bab
abab
. . .

(Asmat stress)



©Dakotah Lambert 4/35

Strict locality

. . . a b a b ⋉

aa
bb
a⋉

O

. . . a b a a ⋉

aa
bb
a⋉

X



©Dakotah Lambert 5/35

Long-distance dependencies: Symmetric harmony

sik’is
SitSedza

Navajo sibilant harmony



©Dakotah Lambert 6/35

Suffix-substitution closure

aXb ∈ L and cXd ∈ L −→ aXd ∈ L
X shared, length at least k

s(it)k is and S(it)k iS,
but not s(it)k iS

not strictly local



©Dakotah Lambert 7/35

Locally testable

Acceptability based on set S of factors.

Symmetric harmony: {s, S} ̸⊆ S



©Dakotah Lambert 8/35

Long-distance dependencies: Culminativity

Less than two ‘b’:
a, ab, abaa, aaaaab,
but not abab or abba

(basically every stress pattern ever)



©Dakotah Lambert 9/35

Locally threshold testable

akbak and akbakbak have same k-factor set

not locally testable

use first-order logic instead:
¬(∃x, y)[x ̸= y ∧ b(x) ∧ b(y)]



©Dakotah Lambert 10/35

Logical levels

CNL: strictly local

Prop: locally testable

FO: locally threshold testable



©Dakotah Lambert 11/35

Long-distance dependencies: Asymmetric harmony

Sotos but not sotoS

(attested in Sarcee)



©Dakotah Lambert 12/35

Asymmetric harmony via precedence

S o t o s s o t o S



©Dakotah Lambert 13/35

Reanalyzing harmony: Tiers

s
o t o

S

other symbols → neutral



©Dakotah Lambert 14/35

Classes

SP
TSL

SL

PT
TLT

LT

SF
TLTT

LTT

< ◁T ◁

CNL

Prop

FO



©Dakotah Lambert 15/35

Mixed relations

factors “abc comes before def”
piecewise-locally testable = dot-depth one

propositional level subsumes LTT



©Dakotah Lambert 16/35

Classes

SP

TSL

SL

TSPL

SPL

SF

TLTT

LTT

PT

TPLT

PLT

TLT
LT

< <,◁T <,◁ ◁T ◁



©Dakotah Lambert 17/35

Varieties

Variety
a class V where for each alphabet Σ,

if L1,L2 ∈ Σ∗V:

∁L1 ∈ Σ∗V and L1 ∪ L2 ∈ Σ∗V
Boolean operations∗

σ−1L1 ∈ Σ∗V and L1σ
−1 ∈ Σ∗V

Quotients
f : Γ → Σ homomorphic, f−1(L1) ∈ Γ∗V
Inverse homomorphisms



©Dakotah Lambert 18/35

Eilenberg’s theorem

Σ∗V ∼ variety of monoids
Σ+V ∼ variety of semigroups

collection closed under

submonoid (subsemigroup)
quotient
finitary direct product



©Dakotah Lambert 19/35

Piecewise branch, expanded

SF = A = Jxωx = xωK

DA = J(xyz)ωy(xyz)ω = (xyz)ωK

PT = J = J(xy)ωx = (xy)ω = y(xy)ωK

LTT1,t = ACom = Jxy = yx; xωx = xωK

PT1 = LT1 = J1 = Jxy = yx; xx = xKSP = J1 ≤ xK



©Dakotah Lambert 20/35

The local branch

convert k-factors to their own individual letters
V 7→ V ∗ D

contains corresponding piecewise class



©Dakotah Lambert 21/35

Local branch

SF = A = A ∗ D

FO2[<,◁] = DA ∗ D

PLT = J ∗ D

LTT = ACom ∗ D

LT = J1 ∗ DSPL = SP ∗ D



©Dakotah Lambert 22/35

The M operator

MV the variety of monoids
generated by S· for S ∈ V



©Dakotah Lambert 23/35

M = multiple tiers

linguistic “lift onto a tier” = algebraic “S 7→ S·”

multiple tiers interacting (Boolean combinations):
converts +-variety V to ∗-variety MV



©Dakotah Lambert 24/35

Learning framework

What kinds of data do learners receive?

How do we extrapolate from that back to patterns?



©Dakotah Lambert 25/35

Limit-learnability with positive data

Only valid words happen
Every valid word will eventually happen
Finite samples
Incrementally: eventually hypothesis stops changing



©Dakotah Lambert 26/35

String extension learning

Assume nothing is valid
For each word, extract information
Add that information into a “grammar”
Information is never removed from the “grammar”
How is this interpreted?



©Dakotah Lambert 27/35

Learning SP

Information: “set of subsequences”
Insertion: set-union

Interpretation:
valid iff set of subsequences is subset of grammar



©Dakotah Lambert 28/35

Learning J1

Information: “set of letters”
Insertion: element-insertion

Interpretation:
valid iff set of letters in grammar



©Dakotah Lambert 29/35

Learning Acom

Information: “thresholding multiset of letters”
Insertion: element-insertion

Interpretation:
valid iff multiset of letters in grammar



©Dakotah Lambert 30/35

Learning PT

Information: “set of subsequences”
Insertion: element-insertion

Interpretation:
valid iff set of subsequences in grammar



©Dakotah Lambert 31/35

Learning locality

choose k
apply factor–letter transformation

learn piecewise base class



©Dakotah Lambert 32/35

Learning multitiers

choose k
for each subset of the alphabet:

apply erasing transformation then factor–letter transformation
information based on this collection



©Dakotah Lambert 33/35

The system

Piecewise base class
Close under inverse factor-collapse (“localize”)
Close under neutral-letter injection (“tierify”)
Close under Boolean operations (“multitierify”)
Result: a new Piecewise base class

A = A ∗ D = T(A ∗ D) = M(A ∗ D)



©Dakotah Lambert 34/35

Classes

LT1

LT

TLT

MTLT

LTT1,t

LTT

TLTT

MTLTT

PT

PLT

TPLT

MTPLT

SP

SPL

TSPL

MTSPL

SL

TSL

mTSL

and so much more



©Dakotah Lambert 35/35

Future directions

Parameter-finding from machines
known for some like D, Acom, . . .
Decomposition of machines
Same structural classes apply to functions
inferring those? (SOSFIA/++)
Other bases


