Constraint-driven analysis of formal languages

Dakotah Lambert

16 Feb 2024

Key points

Classification

- What relations are available?
- How are they used?
- **M** operator :: multiple tiers
- Learning
 - What information is available?
 - How do we extrapolate from it?

Deriving a class hierarchy as the linguists would

Alternation

ab bab abab

. . .

(Asmat stress)

©Dakotah Lambert 3/35

Strict locality

Long-distance dependencies: Symmetric harmony

sik'is ∫it∫edza

Navajo sibilant harmony

$aXb \in L \text{ and } cXd \in L \longrightarrow aXd \in L$ X shared, length at least k

s(it)^kis and ∫(it)^ki∫, but not s(it)^ki∫

not strictly local

Acceptability based on set S of factors.

Symmetric harmony: $\{s, j\} \not\subseteq S$

Long-distance dependencies: Culminativity

Less than two 'b': a, ab, abaa, aaaaab, but not abab or abba

(basically every stress pattern ever)

$a^k ba^k$ and $a^k ba^k ba^k$ have same k-factor set

not locally testable

use first-order logic instead: $\neg(\exists x, y)[x \neq y \land b(x) \land b(y)]$

Logical levels

FO: locally threshold testable Prop: locally testable CNL: strictly local

Long-distance dependencies: Asymmetric harmony

∫otos but not soto∫

(attested in Sarcee)

Asymmetric harmony via precedence

Reanalyzing harmony: Tiers

other symbols \rightarrow neutral

factors "abc comes before def" piecewise-locally testable = dot-depth one

propositional level subsumes LTT

Classes

Varieties

$\label{eq:Variety} \begin{array}{l} \text{ a class } \mathcal{V} \text{ where for each alphabet } \Sigma, \\ \text{ if } L_1, L_2 \in \Sigma^* \mathcal{V} \text{:} \end{array}$

- $CL_1 \in \Sigma^* \mathcal{V}$ and $L_1 \cup L_2 \in \Sigma^* \mathcal{V}$ Boolean operations*
- $\sigma^{-1}L_1 \in \Sigma^* \mathcal{V} \text{ and } L_1 \sigma^{-1} \in \Sigma^* \mathcal{V}$ Quotients
- $f : \Gamma \to \Sigma$ homomorphic, $f^{-1}(L_1) \in \Gamma^* \mathcal{V}$ Inverse homomorphisms

$$\label{eq:static} \begin{split} \Sigma^* \mathcal{V} \sim \text{variety of monoids} \\ \Sigma^+ \mathcal{V} \sim \text{variety of semigroups} \end{split}$$

collection closed under

submonoid (subsemigroup)

quotient

finitary direct product

Piecewise branch, expanded

$$SF = A = \llbracket x^{\omega}x = x^{\omega}\rrbracket$$
$$DA = \llbracket (xyz)^{\omega}y(xyz)^{\omega} = (xyz)^{\omega}\rrbracket$$
$$PT = J = \llbracket (xy)^{\omega}x = (xy)^{\omega} = y(xy)^{\omega}\rrbracket$$
$$LTT_{1,t} = ACom = \llbracket xy = yx; x^{\omega}x = x^{\omega}\rrbracket$$
$$SP = \llbracket 1 \le x\rrbracket$$
$$PT_1 = LT_1 = J_1 = \llbracket xy = yx; xx = x\rrbracket$$

convert k-factors to their own individual letters $\mathbf{V} \mapsto \mathbf{V} * \mathbf{D}$

contains corresponding piecewise class

Local branch

The M operator

MV the variety of monoids generated by S^{\cdot} for $S \in V$

linguistic "lift onto a tier" = algebraic " $S \mapsto S$."

multiple tiers interacting (Boolean combinations): converts +-variety \mathcal{V} to *-variety \mathcal{MV}

What kinds of data do learners receive?

How do we extrapolate from that back to patterns?

Limit-learnability with positive data

- Only valid words happen
- Every valid word will eventually happen
- Finite samples
- Incrementally: eventually hypothesis stops changing

String extension learning

- Assume nothing is valid
- For each word, extract information
- Add that information into a "grammar"
- Information is never removed from the "grammar"
- How is this interpreted?

Information: "set of subsequences" Insertion: set-union

Interpretation: valid iff set of subsequences is subset of grammar

Information: "set of letters" Insertion: element-insertion

Interpretation: valid iff set of letters in grammar

Information: "thresholding multiset of letters" Insertion: element-insertion

Interpretation: valid iff multiset of letters in grammar

Information: "set of subsequences" Insertion: element-insertion

Interpretation: valid iff set of subsequences in grammar

Learning locality

choose *k* apply factor–letter transformation learn piecewise base class

choose *k* for each subset of the alphabet: apply erasing transformation then factor–letter transformation information based on this collection

The system

- Piecewise base class
- Close under inverse factor-collapse ("localize")
- Close under neutral-letter injection ("tierify")
- Close under Boolean operations ("multitierify")
- Result: a new Piecewise base class

$$\mathbf{A} = \mathbf{A} * \mathbf{D} = \mathbf{T}(\mathbf{A} * \mathbf{D}) = \mathbf{M}(\mathbf{A} * \mathbf{D})$$

Classes

and so much more

Parameter-finding from machines known for some like D, Acom, …

- Decomposition of machines
- Same structural classes apply to functions inferring those? (SOSFIA/++)

Other bases