Constraint-driven analysis

of formal languages

Dakotah Lambert

16 Feb 2024

Key points

= Classification
= What relations are available?
= How are they used?

= M operator :: multiple tiers

m Learning

= What information is available?
= How do we extrapolate from it?

Deriving a class hierarchy
as the linguists would

Alternation

ab
bab
abab

(Asmat stress)

Strict locality

aa
bb
ax

aa
bb

Long-distance dependencies: Symmetric harmony

sik’is
[itfedza

Navajo sibilant harmony

Suffix-substitution closure

aXbelandcXd e L — aXd e L
X shared, length at least k

s(itykis and [(it)¥if,
but not s(it)kif

not strictly local

Locally testable

Acceptability based on set S of factors.

Symmetric harmony: {s,[} Z S

Long-distance dependencies: Culminativity

Less than two ‘b’:
a, ab, abaa, aaaaab,
but not abab or abba

(basically every stress pattern ever)

Locally threshold testable

akbak and akbakbak have same k-factor set
not locally testable

use first-order logic instead:
~(3x,y)x #y Ab(x) Ab(y)]

Logical levels

FO: locally threshold testable
|

Prop: locally testable

|
CNL: strictly local

Long-distance dependencies: Asymmetric harmony

Jotos but not soto|

(attested in Sarcee)

Asymmetric harmony via precedence

LT T
[Z750::2t-"30-"3s

Reanalyzing harmony: Tiers

other symbols — neutral

Classes

FO

Prop

CNL

SF
T
LTT
TLT
PT LT
TSL
SP TsL

Mixed relations

factors “abc comes before def”
piecewise-locally testable = dot-depth one

propositional level subsumes LTT

Classes

Varieties

Variety
a class V where for each alphabet ¥,
if L1,Lp € ¥V

wCLyesVandLiULy, € ¥V
Boolean operations*

wmo 'LyexXr*VandLio ' € TV
Quotients

w f: T — X homomorphic, f~'(Ly) € T*V
Inverse homomorphisms

Eilenberg’s theorem

¥*V ~ variety of monoids
Y TV ~ variety of semigroups

collection closed under

m submonoid (subsemigroup)
m quotient
m finitary direct product

Piecewise branch, expanded

SF =A = [x“x = x¥]
|
DA = [(xyz)“y(xyz)* = (xyz)“]
|
PT=J=[(xy)*x = () = y(x)“]

\
LTT; ; = ACom = [xy = yx; x“x = x“]
N\

SP=[1<x] PTi = 1T = Ji =[xy = yx;xx = x]

The local branch

convert k-factors to their own individual letters
V—=VxD

contains corresponding piecewise class

Local branch

SF=A=AxD
|
FO?[<,<] =DAxD
|
PLT=JxD
\
LTT = ACom %D

\
SPL=SP=«D LT=Jy+D

The M operator

MV the variety of monoids
generated by S for S e V

M = multiple tiers

linguistic “lift onto a tier” = algebraic “S — S

multiple tiers interacting (Boolean combinations):
converts +-variety V to x-variety MV

Learning framework

What kinds of data do learners receive?

How do we extrapolate from that back to patterns?

Limit-learnability with positive data

m Only valid words happen

m Every valid word will eventually happen

m Finite samples

m Incrementally: eventually hypothesis stops changing

String extension learning

= Assume nothing is valid

m For each word, extract information

= Add that information into a “grammar”

= Information is never removed from the “grammar”
= How is this interpreted?

Learning SP

Information: “set of subsequences”
Insertion: set-union

Interpretation:
valid iff set of subsequences is subset of grammar

Learning J4

Information: “set of letters”
Insertion: element-insertion

Interpretation:
valid iff set of letters in grammar

Learning Acom

Information: “thresholding multiset of letters”
Insertion: element-insertion

Interpretation:
valid iff multiset of letters in grammar

Learning PT

Information: “set of subsequences”
Insertion: element-insertion

Interpretation:
valid iff set of subsequences in grammar

Learning locality

choose k
apply factor-letter transformation
learn piecewise base class

Learning multitiers

choose k
for each subset of the alphabet:
apply erasing transformation then factor—letter transformation
information based on this collection

The system

m Piecewise base class

= Close under inverse factor-collapse (“localize”)
m Close under neutral-letter injection (“tierify”)

m Close under Boolean operations (“multitierify”)
= Result: a new Piecewise base class

A=Ax«xD=T(AxD)=M(AxD)

Classes

MTPLT

N

TPLT MTSPL MTLTT

PLT TSPL TLTT . MTLT

PT~ SPL T T mTsL

and so much more

Future directions

m Parameter-finding from machines
known for some like D, Acom, ...

= Decomposition of machines

m Same structural classes apply to functions
inferring those? (SOSFIA/++)

m Other bases

